

Metalon® Conductive Inks for Printed Electronics

www.novacentrix.com

Metalon® SPI-529 Conductive Silver Spray Ink

Product Description

SPI-529 is a water-based, silver nanoparticle spray ink which was originally designed for liquid crystal polymers (LCPs). On a wide range of plastics, SPI-529 will produce cured features with high electrical conductivity and excellent adhesion. It has also been specifically formulated to produce cured films with good scratch and abrasion resistance. SPI-529 can be used in electronics packaging technology, EMI / RFI shielding, and as a seed layer for electroplating various metals.

Key Benefits

- Excellent flow properties and spray coverage
- High electrical conductivity at low cured film thicknesses
- Good adhesion on liquid crystal polymers (LCPs), polyester, polyimide, polycarbonate, and treated polyolefins (e.g. polypropylene)
- Used as a seed layer for metal electroplating
- Easy clean up with particle-free detergent and water

Typical Ink Properties

Silver content (wt. %)	50 (± 2)
Density (wet)	1.8 - 2.0 g / mL
Viscosity	40 - 70 cP
pH	5.70 to 5.95
Shelf life with refrigeration	> 8 months (may need pH adjustment)

Thermal Processing Conditions and Properties of printed films on selected substrates¹

	Melinex ST505, a type of treated PET			
Cure temperature (°C)	80	100	120	140
Cure time ² (min)	≥ 30	≥ 15	≥ 15	≥ 5
	0.52	0.40	0.39	0.39
Weight resistivity³ (gΩ / m²)	(3.1x bulk Ag)	(2.4x bulk Ag)	(2.3x bulk Ag)	(2.3x bulk Ag)
	12	9.1	8.5	7.9
Volume resistivity⁴ (μΩ cm)	(7.4x bulk Ag)	(5.7x bulk Ag)	(5.3x bulk Ag)	(5.0x bulk Ag)
Sheet resistance at 1 mil (mΩ / square)	4.6	3.6	3.3	3.1

	Polycarbonate			
Cure temperature (°C)	80	100	120	
Cure time ² (min)	≥ 30	≥ 15	≥ 15	
	0.50	0.44	0.43	
Weight resistivity³ (gΩ / m²)	(3.0x bulk Ag)	(2.6x bulk Ag)	(2.6x bulk Ag)	
	10	9.2	8.4	
Volume resistivity⁴ (μΩ cm)	(6.4x bulk Ag)	(5.8x bulk Ag)	(5.3x bulk Ag)	
Sheet resistance at 1 mil (m Ω / square)	4.0	3.6	3.3	

Metalon® Conductive Inks for Printed Electronics

www.novacentrix.com

Metalon® SPI-529 Conductive Silver Spray Ink

	Polypropylene (stress-relieved)			
Cure temperature (°C)	80	100	120	
Cure time ² (min)	≥ 30	≥ 15	≥ 15	
	0.51	0.48	0.45	
Weight resistivity³ (gΩ / m²)	(3.1x bulk Ag)	(2.9x bulk Ag)	(2.7x bulk Ag)	
	10	9.2	8.5	
Volume resistivity⁴ (μΩ cm)	(6.4x bulk Ag)	(5.8x bulk Ag)	(5.3x bulk Ag)	
Sheet resistance at 1 mil (mΩ / square)	4.0	3.6	3.3	

	Kapton HN, a type of polyimide			
Cure temperature (°C)	140	200	250	275
Cure time ² (min)	≥ 15	≥ 5	≥ 5	≥ 5
	0.36	0.35	0.30	0.27
Weight resistivity³ (gΩ / m²)	(2.2x bulk Ag)	(2.1x bulk Ag)	(1.8x bulk Ag)	(1.6x bulk Ag)
	8.0	7.5	5.8	5.4
Volume resistivity ⁴ (μΩ cm)	(5.0x bulk Ag)	(4.7x bulk Ag)	(3.7x bulk Ag)	(3.4x bulk Ag)
Sheet resistance at 1 mil (m Ω / square)	3.1	2.9	2.3	2.1

 $^{^{1}}$ The theoretical wet ink thickness for all prints was 51 μm . All prints were cured in a convection oven.

General Processing Guidelines

 In order to achieve best adhesion for cure temperatures ≥ 200°C, a two-step heating procedure is recommended. The first cure step should be at a lower temperature, for example 140°C. The second cure step will be at the target cure temperature.

For more information about this ink, please contact us at info@novacentrix.com

²Most tabulated cure times (for a given cure temperature) are shown as a range of times. This is indicated by the use of the "≥" sign. In this range of cure times, the tabulated values of weight and volume resistivity, and sheet resistance at 1 mil are the same.

³The number in brackets for each entry is the weight resistivity value divided by the weight resistivity of bulk silver (at 20°C).

⁴The number in brackets for each entry is the volume resistivity value divided by the volume resistivity of bulk silver (at 20°C).