FERRITE 357 TECHNICAL DATA SHEET

GENERAL	Description	Magnetodielectric paint with Bismuth Ferrite loading (40% w/w)
	Substrates	Polyimide
	Features	Water-based paint
		Through a photonic sintering step, the deposited paint is formed into a densified ferrite film. Before curing, the film can be washed away with water. S-band (2-4 GHz) components printed on this film can result in a roughly 2x miniaturization of those components. This flexible ceramic film is cured using a rapid photonic sintering step. The sintering process reflows the nanoparticle film into a densified ceramic layer suitable for flexible electronics applications. This rate far outpaces the several hours required for vacuum deposition methods to produce high-quality thick films.

PHYSICAL PROPERTIES	Viscosity Specific gravity	15 – 20 cP 3.9	DEPOSITIO	J Method	Dry brush Doctor blade Screen print
	Surface tension	74 – 79 mN/m			Airbrush (diluted with IPA)
	Flash point	N/A (not flammable)	STORAGE	Temperature	Room temperature
	z-avg particle size	200 – 600 nm			(sealed container)
	BFO content	40%		Shelf life	6 months
	Relative permittivity	4 – 5		Cleaning	Water or IPA
	Tan delta	0.05 – 0.1		solvent	
	Relative permeability	1.3 – 2.0			

PULSE	Pre-pulse prep	Dry at 60-100°C for 20 min		
PARAMETERS	Layer thickness	1-20 micron		
	Shot energy	3.8 – 4.0 J/cm ²		
	Lamp voltage	400 – 450 V		
	Magnetic field	0.1-0.5 T (one or more permanent magnets under sample region undergoing sintering during the pulse(s) is sufficient in most cases)		
	Pulse envelope	5000 – 9000 micro-sec		
	¼" distance 2-point resistance	1 – 10 Mega-ohm (minutes after sinter step) >20 Mega-ohm (after 1 – 3 days)		

NovaCentrix 400 Parker Dr, Suite 1110 Austin, TX 78728 Nanohmics, Inc. 6201 E Oltorf St Austin, TX 78741

www.novacentrix.com nova.sales@novacentrix.com